

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

308

Pre-obfuscation model based on COIL intermediate language

Yubo Yang1*, Wei Huang2, Wenqin Fan2, Zhengming Hu1
1Information Security Center, Beijing University of Posts and Telecommunications, 100876, Beijing, China

2School of Computer Science, Communication University of China, 102600, Beijing, China

Received 1 March 2014, www.cmnt.lv

Abstract

Code obfuscation techniques changes and complicates the logic and structure within the program on the basis of assuring the procedures

being implemented correctly, which needs to transform the original program to an intermediate form which can be analyzed. Most of

the pre-obfuscation models at present are lack of unified and formalized intermediate language, and the results of the pre-processing

cannot accurately extract the information needed in obfuscation. A pre-obfuscation model COTOOL which is based on COIL is put

forward in this paper to accurately locate the distribution and weight of the obfuscation node in the program taking advantage of the

pre-processing algorithm of COIL intermediate language. The experimental data shows that this model improves the obfuscation
efficiency and effectiveness greatly.

Keywords: Pre-obfuscation model, intermediate language, CTL instruction, instruction weight

1 Introduction

The modern society starts with the rapid development of

computer technology and industry, and all walks of life

improve their work efficiency and development potential

by applying computer technology or software. Due to such

kind of demands, computer programs and software

systems have greatly enriched and brought convenience to

people's production and life, becoming an essential tool.

And at the same time, they have brought a good deal of

wealth and economic benefits to the individuals and

businesses who engage in the IT industries.

Because of the particularity of the software programs

themselves, they are easily to be copied and imitated. Once

the attacker steals and utilizes the core algorithm and

technology in the programs, and makes benefits with them,

the sound development of the whole IT industries will be

severely damaged. Therefore, for the computer technology

and industry, the security technology which protects the

intellectual property rights of the software products

appears to be particularly important.

As a result, many software security technologies

emerge at the right time. The technology of encrypting the

software’s key information is used to prevent the attacker

from gaining the key information inside the program. One

fatal flaw of this technology lies in the preservation of the

secret key. Once the key is gained by the attacker, the

encryption algorithm will be useless no matter how

complicated it is.

Also, a specific hardware can be used as software

protector, in which physical protection is applied to realize

the security of software. However, this kind of method not

only increases the cost of developing software, but also

* Corresponding author’s e-mail: yangyubobupt@163.com

enormously decreases the scalability and practicality of the

software.

In the premise of ensuring that the execution of the

original program logic remains the same, and through the

conversion of semantic equivalence, code obfuscation

technique complicates the program control flow and data

flow, etc. making the attackers unable to restore right

internal logic and data even if they have the executable file

of the software. What’s more, even if they are able to

accurately restore the internal logic and data of the original

software, they have to pay great amount of cost. So they

finally have to give up.

In 1997, Christian Collberg summarized and classified

code obfuscation techniques in his thesis [1], in which he

also firstly put forward the four forms of obfuscation

classification. In the thesis, the author collected all the

obfuscation algorithms published by others or him and

included them in these four forms. Also, he put forward

three criterions which judge the good and bad of

obfuscation algorithm: potency, resilience and cost.

Potency, the depth or complexity of its algorithm, means

that to what extent can the after-obfuscation P’ be

understood. Resilience refers to the resistance strength in

the process of reverse, namely the time and system space

cost needed to in reversion and cost in developing this

reversion algorithm. Cost means the additional system

memory and performance period added when P’ runs.

Code obfuscation techniques conducts program pre-

processing analysis to the source code or binary file of the

program to be obfuscated, thus generates an intermediate

result (control flow diagram, intermediate language, etc.)

which can be further analyzed, thus realizing the

obfuscation with specific obfuscation algorithm on this

basis. Compared with source code, the binary file can

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

309

ignore the dependency of the programming language and

make the analysis more universal and accurate, so the

current mainstream of code obfuscation techniques all take

binary file as the pre-processing object.

2 Related works

When conducting pre-processing before obfuscation to the

binary file of the program, the current mainstream code

obfuscation model mainly depend on the static program

analysis platforms such as CodeSurfer [2], McVeTo [3],

phoenix [4] and Jakstab [5] etc. The CodeSurfer program

analysis platform mainly conducts static analysis to the

binary file of the x86 platform with static analysis

algorithm VSA which has quite accurate analysis to the

internal storage operation of the program. McVeTo locates

and analyzes the status of the execution path in the

program with the help of DPG (Directed Proof

Generation). Phoenix is a whole set of program analysis

platform developed by the Microsoft Cooperation. It can

convert other languages into SSCLI (Shared Source

Common Language Infrastructure) framework code,

which is convenient for later research and analysis. Jakstab

tool is an analysis platform to Java code. It defines the

disassembling algorithm of iterative disassembler, and

generates the program through iterative analysis of the data

flow. These platforms mainly convert the binary code into

assembly code and conduct analysis on this basis. There is

no optimization or disposition conducted to the

intermediate result of the program in allusion to the later

obfuscation needs, so the control flow graph and related

information gained in pre-processing are not accurate

enough, leading to an unsatisfactory result of obfuscation

algorithm.

In order to make up the insufficient of static program

analysis platform to the dynamic information acquisition

of the program, the dynamic instruction level binary

analysis platforms DynamoRIO [6], PIN [7] and Valgrind

[8] adopt code cache technology. In the process of

conducting simulation execution to binary program, the

program’s execution code will be copied to the code cache,

and a specific analysis will be conducted by the

modification of the program’s code. The operation of code

takes the basic block of the program as the operation unit.

The executing state will be saved when each basic unit

completes the execution, and it will then be switched to the

next basic block to continue the execution. At the same

time, these platforms have good expandability. The API

provided by the platform can be used to write related

program analysis plug-ins to provide information which is

more rich and accurate to the analysis result of the pre-

obfuscation processing. However, the features of the

dynamic analysis platforms make it unable to be the main

body of the pre-obfuscation processing, and only some

partial codes can be conducted dynamic analysis on the

basis of static analysis. The tradeoffs between these two

kinds of analysis techniques then become the difficult

point in pre-obfuscation model design.

In the current code obfuscation research field, LOCO

[9] and PLTO [10] are two relatively mainstream code

obfuscation systems. The LOCO includes the modules of

LANCET and Diablo, in which LANCET is a set of GUI

interface with which the control flow graph of the program

will be presented in a visual way and which can conduct

search and edit to the basic block in the program according

to the association attributes. Diablo can conduct rewriting

operation to the binary programs of the platforms when

linking, and in this way it conducts fine granularity

obfuscation to the binary program, providing three ways to

operate it: full-automatic, semi-automatic and manual. The

code obfuscation way of control flow flattening and

opaque predicates is provided in this obfuscation system.

While PLTO generates ICFG (Interprocedural Control

Flow Graph) through analysis to the original program and

conducts obfuscation to the program code with three steps.

First, pruning and simplifying to the branching path

branches building ICFG; second, operate the internal

storage and register in the program, and deal with the

functions; third, redistribute the basic block of the

program. These two kinds of tools are also based on the

static disassembly result of the program, and the

obfuscation algorithms are relatively basic and simple

when conducting obfuscation disposition, so they cannot

improve the obfuscation effect effectively.

It can be found that in the pre-obfuscation stage, there

is a lack of formalized and unified language to describe the

intermediate result abstractly. This kind of situation will

not only greatly decrease the universality of designing the

code obfuscation tools, but also have quite a different

obfuscation processing result with the expectations. The

current mainstream intermediate languages are SSA, CIL,

GIMPLE and LLVM, in which GIMPLE and LLVM are of

SSA form. The procedure of pre-obfuscation is the

decompilation of binary program to intermediate

language, and it can accurately describe and locate the

obfuscation nodes. Therefore, these languages cannot

realize these functions well.

Based on the analysis of the current research status of

the code pre-obfuscation model, a pre-obfuscation model

COTOOL based on COIL intermediate language is

proposed in this paper. This model will conduct initialized

analysis to the binary file in the pre-processing stage, and

convert it into COIL. By using of related pre-processing

algorithm, a control flow graph will be accurately

generated and the obfuscation nodes will be located to tail

after the access situation of the related internal storage and

register, making it more effective when conducting

obfuscation algorithm later. Thus, the status that many

code obfuscation systems have inaccurately analysis result

in the pre-processing stage is well solved. On the other

hand, the COIL itself provides many formalized

description methods which are needed when conducting

obfuscation processing, and conducts symbolic abstract

formula to the performance of the program. By this way,

the control flow and data flow information details of the

program can be accurately described. As the intermediate

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

310

layer of the operation, the COIL guarantees the integrity

and unity in the model, thus ensuring the accuracy of the

final obfuscation result.

3 Model construction and Algorithm analysis

3.1 MODEL STRUCTURE

Binary FileBinary File

COIL Transform ModuleCOIL Transform Module Pre-Obfuscation ModulePre-Obfuscation Module

COILCOIL

BFD
(parse binary

file)

BFD
(parse binary

file)

Disassembly
Engine

Disassembly
Engine

COIL Engine
(VEX)

COIL Engine
(VEX)

Parse Code
Block

Parse Code
Block

Pre-Obfuscation
Algorithm

Pre-Obfuscation
Algorithm

CFGCFG DDGDDG PFGPFG

Pre-Obfuscation
Data

Pre-Obfuscation
Data

FIGURE 1 Framework of code pre-obfuscation model

The pre-obfuscation model COTOOL includes the COIL

transform module and pre-obfuscation module. As the

module which transforms the binary file to COIL, it is the

basic module to conduct operation. And only on this basis,

can the intermediate form of the program be pre-processed.

The pre-obfuscation module conducts the COIL

intermediate form of the input program and stores the

related data information into the database. This is the core

part of the model.

As is shown in Figure 1, the designing of COIL

transform module mainly includes three functions. Firstly,

the BFD (Binary format descriptor) is used to analyze

binary program files. This tool can provide API to

distinguish the object file formats and analyze related

section contents in the binary files. Then, it will select the

code section and submit to the disassembly engine to

analyze. The file formats the tool supports are PE, ELF,

etc.

Secondly, the gained binary code section will be

analyzed through the disassembly engine and be

transformed to assembly code. The disassembly tools IDA

Pro and Kruegel Disassembler are used in the disassembly

engine. The advantage of IDA Pro is that it can decrease

the assembly code parsing error rate and high efficiency.

Some obfuscation operation has been done to part of the

programs before analysis, and it may lead to IDA Pro

analysis error. The Kruegel Disassembler will work at such

occasions to improve the accuracy of disassembly.

Last, the COIL engine will transform the assembly

code to the COIL form. In this process, the VEX module

[1], which is the module of Valgrind dynamic debugging

tools, is firstly used to transform the assembly language to

an initial intermediate language. The intermediate

language type transformed by this module is relatively

easy, and is not able to deal with the needs of the

obfuscation operation. What’s more, the initial

intermediate expression has semantic fuzziness.

Therefore, a later optimizing process is needed to optimize

the initial intermediate language to the COIL form which

could be applied in this model.

After the optimizing process, the form of COIL is

finally output.

As is shown in Figure 1, the designing of pre-

obfuscation module mainly includes two functions. The

first is the generating of the control flow graph. The

program is divided into basic blocks through the analysis

of the COIL. Except the control flow graph, DDG (Data

Dependence Graph) and PFG (Program Dependence

Graph) can also be generated by using of the data flow

analysis result.

When the program is divided into basic blocks and

generates the control flow graph, it will be saved in the

database. Therefore, when conducting pre-processing

algorithm to this part, related information should be

extracted from the database firstly. When conducting

analysis with pre-processing algorithm, first locate the

instructions, then distribute the nodes and at last handle the

interface. As for the information which has been dealt

with, save them in the database for to read and analyze

directly and conveniently in future when conducting

obfuscation process of the program with obfuscation

algorithm.

3.2 COIL TRANSFORM

The grammar of COIL is made up of parameters which

show the program state. It includes the current instruction

state (∏), the current variable state (∆), the current label

state (), the next instruction state of the program (θ) and

the current register state of the program (φ). Their

description is as shown in Table 1.

TABLE 1 Basic description of COIL

Argument Description

∏ instruction→memory address

∆ var→special value

 label→label instruction

θ next instruction status

φ current register status

These parameters which show the basic state of the

program can express the execution status in the program

accurately. These formalized expressions have the

following fundamental forms:

'

transformation rule

stmt stmt




, (1)

where 'stmt stmt represents the change of the program

state and transformation rule represents the calculation

rules of program status changes. Based on such formalized

expressions, the intermediate language can be used to

abstract various states in the process of program execution

to corresponding mathematical forms and then analyze and

deal with them.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

311

jmp(e) in the program state can be describes with the

following expression:

, []

(, , , ()) '(, , ,)

e v v

stmt jmp e stmt v

 

  

    

   
. (2)

cjmp(e1, e2, e3) in the program state includes two kinds

of jump conditions, cjmp (0, e2, e3) when the condition is

false and cjmp (1, e2, e3) when the condition is true.

The halt(e) in the program state can be describes with

the following expression.

(, , , ())

e v

stmt halt e term





 

  
. (3)

assert(e) in the program state includes exception

handling of two situations, assert(1) when the condition is

true and assert(0) when the condition is false. These two

kinds of states can be described with the following

expressions.

The expression when the exception handling condition

is true:

1

1

1 , []

(, , , ()) '(, , ,)

e v

stmt assert e stmt v

 

  

    

   
. (4)

The expression when the exception handling condition

is false:

2

2

0 , []

(, , , ()) '(, , ,)

e v

stmt assert e stmt v

 

  

    

   
. (5)

The expression description of var in the program is as

following:

[]

(, , ,)

x v

stmt x v

 

   
. (6)

The expression description of binary arithmetic

operation ◇b in the program is as following:

1 1 2 2 1 2

1 2

, ,

(, ,)

e v e v v v bv

stmt e be v





      

   
. (7)

The expression description of unary arithmetic

operation ◇u in the program is as following:

1 1 1

1

,

(, ,)

e v v bv

stmt be v





    

  
. (8)

The program state of COIL and formalized expression

of operation provides a mathematical form intermediate

results which can be analyzed and calculated for the code

obfuscation model operation to original program and later

obfuscation processing, thus guaranteeing the accuracy

and uniqueness of operation and analysis the changes of

internal storage and register clearly in this process. This

solves the problem of difference of intermediate

expression form in the obfuscation processing, and at the

same time solves the universality problem of obfuscation

algorithm in code obfuscation model.

3.3 PRE-OBFUSCATION ALGORITHM

The basic principle of code obfuscation is that through

changing and making complicated the execution paths of

control flow or data flow in the program to guarantee the

software safety. In order to effectively conduct obfuscation

to the logic in the program, the CTI instruction in the

program should be the primarily considered target in

obfuscation. The CTI includes direct jump instruction,

condition jump instruction, return instruction and function

reference instruction. The specific COIL form of

expression is the program state statements such as jmp,

cjmp, assert and halt, etc. Therefore, in order to effectively

conduct obfuscation process to the program, we should

firstly locate these instructions in the program when pre-

processing binary programs. The algorithm of locating

CTI instruction is based on the label of the COIL.

The definition of label is given:

Definition 1 Assume that the CTI instruction in program

P is e, then the label can be expressed as label (e), and the

formula expression is as following:

[] [']
()

[] '[']

e e
label e

  


 
, (9)

where e is the CTI instruction which is labeled, and the

program’s instruction jump change state and the next label

location is recorded.

FIGURE 2 Pseudo code label to CTI instruction

After defining the statement of label, a series of

operations should then be done to realize the adding and

processing of label statements. It is mainly divided into the

following three stages:

Firstly, in the process of transforming binary program

to COIL, label all the CTI instructions, and fill up the

related information of the label statements in allusion to

the logic of this CTI instruction.

Secondly, when generating the control flow graph by

COIL, analyze and summarize the label information in the

Input: Binary Program P
Output: Program P’ based on COIL

language

Function: set_label_information

while(instruction ins != NULL)

{
coil_ins= Convert_Binary_to_COIL(ins);

if(coil_ins == CTI instruction)

{
set_label_tag(coil_ins);

info = label(coil_ins);

}
else

{

info = NULL;
}

ins = next instruction;

}

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

312

basic blocks divided and generates the label information

of the basic blocks which can mainly be used to label the

branch jump information of the entry and exit points of the

basic blocks.

At last, establish relationship between the label

information of the basic blocks through logic of jumping.

By this way, the CTI instructions gathering of the paths

will be got based on the specified route of the control flow

in the later operation. And this can be seen as a basis to

conduct obfuscation process.

In the first stage, label to the CTI instruction of

intermediate language should be done, and related

information should be generated according to the formula

definition of label. The pseudo code of the algorithm is as

shown in Figure 2.

In the second stage, control flow graph of the generated

COIL should be generated. And in the process of dividing

the basic blocks of the control flow graph, the label

statement information in the basic blocks should be

merged and the jump information of the entry and exit

points as well as the internal CTI instruction logic should

be labeled. Figure 3 shows the information included in the

label of the basic blocks.

…

…

…
CTI Instruction

…

…

…
CTI Instruction

labellabel

ININ

T-OUTT-OUT F-OUTF-OUT

ININ

T-OUTT-OUT

F-OUTF-OUT

Label in code block

FIGURE 3 Label of the basic block

The last stage is to relate the information in the label of

single basic blocks based on the control flow graph. In this

way, there is no need to conduct secondary analysis to the

information of the basic blocks, and the location of

information of all the CTI instructions can be located

through the information of label in the specified program

execution path.

labellabel

ININ

T-OUTT-OUT

F-OUTF-OUT

labellabel

ININ

T-OUTT-OUT

F-OUTF-OUT

labellabel

ININ

T-OUTT-OUT

F-OUTF-OUT

Block A

Block B Block C
FIGURE 4 Interrelation of the label information in basic block

As is shown in Figure 4, when the basic blocks

generate their own label information, a connection will be

established through the logic relationship between input

and output. The output in label has two kinds of situations:

T-OUT when the condition is true and F-OUT when the

condition is false. If there is no condition jump for the

output of basic blocks, then set them unified as T-OUT and

set F-OUT as NULL.

The process of obfuscation processing to binary

program mainly includes two aspects. The first aspect is to

locate the CTI instruction in the control flow graph of the

original programs. And the second is to control the

location, quantity and density, etc. when adding

obfuscation nodes because the control of these attributes

directly decide the improvement effect on security after the

program obfuscation.

Therefore, to define the obfuscation nodes distribution

based on control flow, firstly we need to analyze the

weight of the CTI instructions of the basic blocks. Then,

the Dijkstra algorithm will be used to conduct shortest path

analysis to the control flow graph which has weight, and

confirm the distribution of obfuscation nodes in the

program according to the analysis result.

First, conduct weight classification to the CTI

instruction in the basic blocks of the program control flow

graph. The classification of the weight should be done

based on the following three criteria.

The execution frequency of the CTI instruction: which

is shown as CTIfre, refers to the number of times the CTI

instruction being executed in entire processing procedure

in the program’s control flow graph. The CTI instruction

which performs higher execution frequency always lies in

the loop structure of program or the function entry point

which is frequently called. This kind of CTI instruction is

generally the entry point through which the key algorithm

or specific algorithm is conducted.

The execution density of the CTI instruction: which is

shown as CTIint, refers to the continuously called CTI

instruction quantity when it is called in an entire

processing procedure in the program’s control flow graph.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

313

This kind of situation always appears in the nested

function, recursive function or the operations of accessing

the address again and again. This kind of CTI instruction

mainly focuses on the process of repeat call and data

access of the program to some specific operations.

The execution priority of the CTI order: which is

shown as CTIpri, refers to the importance of CTI instruction

when the program executes in the control flow graph. For

example, the CTI instruction which calls some key

algorithms or functions performs higher execution

priority, while the ordinary jump statement, comparison

and cyclic process perform lower execution priority.

Based on the above criteria to CTI instruction weight

classification, the definition of CTI instruction weight is

then put forward here.

The program control flow graph of P is G, and the

number of basic blocks called in an execution path in G is

n, then the quantity of CTI instruction called in this path

will also be n, and the number of times CTI instruction

being called will be m, and m>n. From this, the algorithm

formula of CTIfre, CTIint and CTIpri can be put forward.

Definition 2 Assume that the gathering of CTI instruction

in the execution path can be shown as Ω, then ,iCTI 

the standard deviation
CTIF of CTI instruction execution

times in this path can be shown as:

2

1

1 n

CTIF i

i

m
CTI

n n




 
  

 
 . (10)

Definition 3 Set the execution frequency of CTI

instruction as CTIfre, and the execution times of the current

CTI order is x, then the CTIfre can be expressed as:

0 , 1

, 1

CTIF

fre CTIF

CTIF

CTIF

x

m
CTI x

n
x








  

 

   
   



. (11)

where the CTI instruction will be executed at least once,

so 1x  .

Definition 4 Set the execution density of CTI instruction

as CTIint, and the continuous jump times of the current CTI

instruction is x, then the standard deviation of CTI

instruction execution density is CTIF , so the CTIint can be

expressed as:

int

0 ,

,

CTII

CTII

CTII

CTII

x

m
CTI x

n
x








 

 

   
  



. (12)

where 0x  .

Definition 5 Set the execution priority of the CTI

instruction as CTIpri. The priority cannot be quantized with

formulas, so the way of specified rules will be used to

define:

,

2 ,

3 ,

pri

basic priotity

CTI key branch

entrance of function

 


  
   

. (13)

The equation of the CTI instruction weight will be

received then.

Definition 6 The weight of CTI instruction here can be

represented as WCTI:

int[]CTI fre priW CTI CTI CTI   , (14)

where WCTI should be a positive integer.

When the defined equation of CTI instruction is

gained, the control flow graph G=(V,E), can be changed to

G’=(V,E,W), Then, apply the Dijkstra algorithm to

calculate the shortest path between CTI instruction nodes

in the control flow graph.

There are at most two exit edges in the structure of

basic block of the process control flow graph, so an

execution path which performs high weight will be got

when the result of the Dijkstra algorithm is inverted. After

that, confirm the number of obfuscation nodes on this path

according to the expectations of obfuscation, and then

locate them according to the high-low order of the weight.

FIGURE 5 Pseudo code of obfuscation node distribution algorithm

Therefore, the pseudo code of the obfuscation nodes

distribution algorithm based on control flow is as shown in

Figure 5.

The obfuscation nodes distribution algorithm based on

control flow conducts the partition of the weight by the

characteristic of CTI in execution. Then the CTI

instruction in the control flow graph is located through the

weight information generated, and an insert operation will

be done to the obfuscation nodes according to related

information. Thus, the distribution of obfuscation nodes

can be conducted according to the importance of execution

position in program control flow.

Input: the CFG G of the program P

Output: new CO-node coverage

function CO_node_coverage

{

while(CTI instruction != NULL)
{

generate_weigth_CTI(CTI instruction);

next CTI instruction;
}

G’=Dijkstra(G, w, s);

if('! 0G )

{

insert_CO_node(',
CTI

G W);

}
}

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

314

4 Experiment

In order to verify the effectiveness of code pre-obfuscation

model on improving the program obfuscation efficiency

and effect, the following experiment is performed.

In the experiment, the benchmark program SPECint-

2006 benchmark suite is selected, with the latest version

1.2 [12]. There are 12 test benchmark programs in SPECint

2006. They are mainly compiled with C/C++ language.

The program of test set will be provided by the form of

source code, which is convenient for us to choose a proper

compiler before compiling the program to a binary

program to adapt to different operation system. In the

experiment, the 6 programs shown in Table 2 are selected

to perform comparison test.

TABLE 2 Benchmark of the experiment

Benchmark Language Compiler Platform

400.perlbench C GCC UBUNTU
401.bzip2 C GCC UBUNTU

429.mcf C GCC UBUNTU

445.gobmk C GCC UBUNTU
456.hmmer C GCC UBUNTU

458.sjeng C GCC UBUNTU

The experimental platform is 2.9Hz Intel Core2 Duo

CPU, with an internal storage of 4GB. The operating

system platform is Ubuntu 11. And the compiler is gcc

version 3.4, with an optimization level of O3. The IDA Pro

tool will accomplish the reverse work for the test program

to assess the obfuscation result.

MPOP is used in the experiment as the obfuscation

program. Through comparison between the obfuscation

program and the program using the pre-obfuscation model,

the experiment tests the effectiveness of this model from

aspects of obfuscation efficiency, obfuscation effect and

anti-reversion execution time.

When conducting comparison test to the obfuscation

effect, the direct obfuscation which uses MPOP algorithm

and obfuscation based on COTOOL model are

respectively applied to the sample program, and the

obfuscation efficiency comparison result in Figure 6 is

showed.

FIGURE 6 Time comparison of obfuscation efficiency

As is shown in Figure 6, compared to direct

obfuscation, the obfuscation efficiency based on

COTOOL model has significantly improved, with the

average execution time decreasing about a half. The

COTOOL model conducts extracts and analyzes the

related information of the original program, so the time

spent in traversing the entire program is decreased.

FIGURE 7 Effectiveness comparison of obfuscation

As is shown in Figure 7, the comparison result of anti-

reversion ability after obfuscation of two ways applied in

the sample program is revealed. The MPOP obfuscation

algorithm itself has good obfuscation effect, being able to

reach an average obfuscation degree 70%. With the

COTOOL model, the obfuscation degree has an average

increase of 15%, which is quite obvious.

FIGURE 8 Performance time comparison of anti-obfuscation

As is shown in Figure 8, with the increasing of the

obfuscation nodes added in the sample program, the

average time the anti-obfuscation tool spent to traverse the

execution program path also increases. Due to the fact that

the obfuscation program based on COTOOL can locate the

key position of the program more accurately and the

effects of the obfuscation are more obvious, the execution

time increases compared to the original obfuscation

algorithm, making the anti-obfuscation program unable to

accurately restore the original program because of the

increasing of time cost.

0

50

100

150

200

250

300
(s)

obfuscation no model

obfuscation with model

0%

50%

100%

obfuscation no model

obfuscation with model

0,56
0,98

1,42
1,85

2,68

0,23

0,94
1,53

1,93

2,59 3,21

0

1

2

3

4

0 10 20 30 40 50

(s)

obfuscation no model

obfuscation with model

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 308-315 Yang Yubo, Huang Wei, Fan Wenqin, Hu Zhengming

315

5 Conclusion

Code pre-obfuscation model, COTOOL, which is based on

COIL, is proposed in this paper. In allusion to the current

situation that there is no formalized unified language to

obfuscation pre-processing, this model proposes the COIL

intermediate language to describe the key information and

logic in the program. Also, it put forward the pre-

processing algorithm which is based on COIL to extract

the location distribution and weight information of

obfuscation node in the original program, decreasing the

time spent in the obfuscation algorithm traversing the

entire program. In the experiment, it is indicated that

through the tests of obfuscation efficiency, obfuscation

effect and anti-reversion execution time, the COTOOL

pre-obfuscation model can effectively improve the

obfuscation efficiency and effect of obfuscation algorithm.

References

[1] Collberg C, Thomborson C, Low D 1997 A taxonomy of obfuscating

transformations Department of Computer Science University of

Auckland New Zealand

[2] Balakrishnan G, Gruian R, Reps T, Teitelbaum T 2005
CodeSurfer/x86 – a platform for analyzing x86 executables Compiler

Construction 250-4

[3] Driscoll E, Thakur A, Reps T 2012 OpenNWA: a nested-word
automaton library Computer Aided Verification 665-71

[4] “phoenix” 2013 [Online] Available:

http://research.microsoft.com/en-
us/collaboration/focus/cs/phoenix.aspx

[5] Nguyen M H, Nguyen T B, Quan T T, Ogawa M 2013 A Hybrid

Approach for Control Flow Graph Construction from Binary Code
Software Engineering Conference (APSEC 2013 20th Asia-Pacific)

159-64

[6] Zhou N 2014 Dynamic Program Analysis and Optimization under
DynamoRIO

[7] Luk C J, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace

S, Reddi V J, Hazelwood K 2005 Pin: building customized program
analysis tools with dynamic instrumentation PLDI '05 Proceedings

of the 2005 ACM SIGPLAN conference on Programming language

design and implementation 40(6) 190-200
[8] Carrez S 2013 Optimization with Valgrind Massif and Cachegrind

[9] Madou M, van Put L, de Bosschere K 2006 Loco: An interactive

code (de) obfuscation tool Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program

manipulation 140-4

[10] Hiltunen M A, Jim T, Rajagopalan M, Schlichting R D 2011 System
and method for enforcing application security policies using

authenticated system calls Google Patents

[11] Bandhakavi S, King S T, Madhusudan P, Winslett M 2010 VEX:
Vetting Browser Extensions for Security Vulnerabilities USENIX

Security Symposium 10 339-54

[12] SPEC CPU2006 2013 [Online] Available:
http://www.spec.org/cpu2006/

Authors

Yubo Yang, 1986, Shanxi, P.R. China.

Current position, grades: PhD candidate in Information Security Center, Beijing University of Posts and Telecommunications,
China.
University studies: Beijing University of Posts and Telecommunications, China.
Scientific interests: information security, code obfuscation.

Wei Huang, 1983, Anhui, P.R. China.

Current position, grades: instructor at the School of Computer Science, Communication University of China.
University studies: Beijing University of Posts and Telecommunications, China.
Scientific interests: information security.

Wenqing Fan, 1983, Sichuan, P.R. China.

Current position, grades: Instructor in School of Computer Science, Communication University of China.
University studies: Beijing University of Posts and Telecommunications, China.
Scientific interests: information security.

Zhengming Hu, 1931, Hubei, P.R. China.

Current position, grades: Professor in Information Security Center, Beijing University of Posts and Telecommunications, China.
University studies: Beijing University of Posts and Telecommunications, China.
Scientific interests: information security.

